Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Emerg Infect Dis ; 29(5): 1033-1037, 2023 05.
Article in English | MEDLINE | ID: covidwho-2292751

ABSTRACT

SARS-CoV-2 transmits principally by air; contact and fomite transmission may also occur. Variants of concern are more transmissible than ancestral SARS-CoV-2. We found indications of possible increased aerosol and surface stability for early variants of concern, but not for the Delta and Omicron variants. Stability changes are unlikely to explain increased transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Respiratory Aerosols and Droplets
2.
Am J Pathol ; 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2274189

ABSTRACT

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.

4.
Nature ; 612(7941): 758-763, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160240

ABSTRACT

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.


Subject(s)
Autopsy , Brain , COVID-19 , Organ Specificity , SARS-CoV-2 , Humans , Brain/virology , COVID-19/virology , RNA, Viral/analysis , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Replication , Time Factors , Respiratory System/pathology , Respiratory System/virology
5.
Sci Adv ; 8(46): eade1860, 2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2137356

ABSTRACT

Since the emergence of SARS-CoV-2, five different variants of concern (VOCs) have been identified: Alpha, Beta, Gamma, Delta, and Omicron. Because of confounding factors in the human population, such as preexisting immunity, comparing severity of disease caused by different VOCs is challenging. Here, we investigate disease progression in the rhesus macaque model upon inoculation with the Delta, Omicron BA.1, and Omicron BA.2 VOCs. Disease severity in rhesus macaques inoculated with Omicron BA.1 or BA.2 was lower than those inoculated with Delta and resulted in significantly lower viral loads in nasal swabs, bronchial cytology brush samples, and lung tissue in rhesus macaques. Cytokines and chemokines were up-regulated in nasosorption samples of Delta animals compared to Omicron BA.1 and BA.2 animals. Overall, these data suggest that, in rhesus macaques, Omicron replicates to lower levels than the Delta VOC, resulting in reduced clinical disease.

6.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: covidwho-2138383

ABSTRACT

An animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes. Virus was detected in nasal, oral, rectal, and fur swabs. Deep sequencing of SARS-CoV-2 from oral swabs and lung tissue samples showed repeated enrichment for a mutation in the gene encoding nonstructural protein 6 in open reading frame 1ab. Together, these data indicate that American mink develop clinical features characteristic of severe COVID-19 and, as such, are uniquely suited to test viral countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mink , Lung/diagnostic imaging
9.
Lancet Microbe ; 3(7): e533-e542, 2022 07.
Article in English | MEDLINE | ID: covidwho-2050136

ABSTRACT

BACKGROUND: Viral load in patients with Ebola virus disease affects case fatality rate and is an important parameter used for diagnostic cutoffs, stratification in randomised controlled trials, and epidemiological studies. However, viral load in Ebola virus disease is currently estimated using numerous different assays and protocols that were not developed or validated for this purpose. Here, our aim was to conduct a laboratory-based re-evaluation of the viral loads of a large cohort of Liberian patients with Ebola virus disease and analyse these data in the broader context of the west Africa epidemic. METHODS: In this retrospective observational study, whole blood samples from patients at the Eternal Love Winning Africa Ebola treatment unit (Monrovia, Liberia) were re-extracted with an optimised protocol and analysed by droplet digital PCR (ddPCR) using a novel semi-strand specific assay to measure viral load. To allow for more direct comparisons, the ddPCR viral loads were also back-calculated to cycle threshold (Ct) values. The new viral load data were then compared with the Ct values from the original diagnostic quantitative RT-PCR (qRT-PCR) testing to identify differing trends and discrepancies. FINDINGS: Between Aug 28 and Dec 18, 2014, 727 whole blood samples from 528 individuals were collected. 463 (64%) were first-draw samples and 409 (56%) were from patients positive for Ebola virus (EBOV), species Zaire ebolavirus. Of the 307 first-draw EBOV-positive samples, 127 (41%) were from survivors and 180 (59%) were from non-survivors; 155 (50%) were women, 145 (47%) were men, and seven (2%) were not recorded, and the mean age was 29·3 (SD 15·0) years for women and 31·8 (SD 14·8) years for men. Survivors had significantly lower mean viral loads at presentation than non-survivors in both the reanalysed dataset (5·61 [95% CI 5·34-5·87] vs 7·19 [6·99-7·38] log10 EBOV RNA copies per mL; p<0·0001) and diagnostic dataset (Ct value 28·72 [27·97-29·47] vs 26·26 [25·72-26·81]; p<0·0001). However, the prognostic capacity of viral load increased with the reanalysed dataset (odds ratio [OR] of death 8·06 [95% CI 4·81-13·53], p<0·0001 for viral loads above 6·71 log10 EBOV RNA copies per mL vs OR of death 2·02 [1·27-3·20], p=0·0028 for Ct values below 27·37). Diagnostic qRT-PCR significantly (p<0·0001) underestimated viral load in both survivors and non-survivors (difference in diagnostic Ct value minus laboratory Ct value of 1·79 [95% CI 1·16-2·43] for survivors and 5·15 [4·43-5·87] for non-survivors). Six samples that were reported negative by diagnostic testing were found to be positive upon reanalysis and had high viral loads. INTERPRETATION: Inaccurate viral load estimation from diagnostic Ct values is probably multifactorial; however, unaddressed PCR inhibition from tissue damage in patients with fulminant Ebola virus disease could largely account for the discrepancies observed in our study. Testing protocols for Ebola virus disease require further standardisation and validation to produce accurate viral load estimates, minimise false negatives, and allow for reliable epidemiological investigation. FUNDING: Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Adult , Ebolavirus/genetics , Female , Hemorrhagic Fever, Ebola/diagnosis , Humans , Liberia/epidemiology , Male , RNA , Viral Load
10.
Environ Sci Technol ; 56(17): 12424-12430, 2022 09 06.
Article in English | MEDLINE | ID: covidwho-2000844

ABSTRACT

Behavioral and medical control measures have not been effective in containing the spread of SARS-CoV-2 in large part due to the unwillingness of populations to adhere to "best practices". Ultraviolet light with wavelengths of between 200 and 280 nm (UV-C) and, in particular, germicidal ultraviolet light, which refers to wavelengths around 254 nm, have the potential to unobtrusively reduce the risk of SARS-CoV-2 transmission in enclosed spaces. We investigated the effectiveness of a strategy using UV-C light to prevent airborne transmission of the virus in a hamster model. Treatment of environmental air with 254 nm UV-C light prevented transmission of SARS-CoV-2 between individuals in a model using highly susceptible Syrian golden hamsters. The prevention of transmission of SARS-CoV-2 in a natural system by treating elements of the surrounding environment is one more weapon in the arsenal to combat COVID. The results presented indicate that coupling mitigation strategies utilizing UV-C light, along with current methods to reduce transmission risk, have the potential to allow a return to normal indoor activities.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Respiratory Aerosols and Droplets , Ultraviolet Rays
11.
Nat Commun ; 13(1): 4610, 2022 08 08.
Article in English | MEDLINE | ID: covidwho-1977995

ABSTRACT

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Viral , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Cricetinae , Humans , Mesocricetus , SARS-CoV-2
12.
13.
Science (New York, N.Y.) ; 2022.
Article in English | EuropePMC | ID: covidwho-1939926

ABSTRACT

To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded, rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicrons and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. Description

14.
Viruses ; 14(3)2022 03 06.
Article in English | MEDLINE | ID: covidwho-1786061

ABSTRACT

The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic have led to the development of various diagnostic tests. The OraSure InteliSwab™ COVID-19 Rapid Test is a recently developed and FDA emergency use-authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern such as Omicron. In this study, the sensitivity of the OraSure InteliSwab™ Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab™ Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants, with recorded limits of detection ranging between 3.77 × 105 and 9.13 × 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the six VOCs. Ultimately, the OraSure InteliSwab™ COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nucleocapsid Proteins/genetics , Pandemics , SARS-CoV-2/genetics
15.
PLoS Pathog ; 18(1): e1010161, 2022 01.
Article in English | MEDLINE | ID: covidwho-1703195

ABSTRACT

The global response to Coronavirus Disease 2019 (COVID-19) is now facing new challenges such as vaccine inequity and the emergence of SARS-CoV-2 variants of concern (VOCs). Preclinical models of disease, in particular animal models, are essential to investigate VOC pathogenesis, vaccine correlates of protection and postexposure therapies. Here, we provide an update from the World Health Organization (WHO) COVID-19 modeling expert group (WHO-COM) assembled by WHO, regarding advances in preclinical models. In particular, we discuss how animal model research is playing a key role to evaluate VOC virulence, transmission and immune escape, and how animal models are being refined to recapitulate COVID-19 demographic variables such as comorbidities and age.


Subject(s)
COVID-19/etiology , Disease Models, Animal , SARS-CoV-2 , Age Factors , Animals , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Comorbidity , Humans , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
16.
Microorganisms ; 10(2)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1706054

ABSTRACT

As the COVID-19 pandemic moves into its third year, there remains a need for additional animal models better recapitulating severe COVID to study SARS-CoV-2 pathogenesis and develop countermeasures, especially treatment options. Pigs are known intermediate hosts for many viruses with zoonotic potential and are susceptible to infection with alpha, beta and delta genera of coronaviruses. Herein, we infected young (3 weeks of age) pigs with SARS-CoV-2 using a combination of respiratory and parenteral inoculation routes. Pigs did not develop clinical disease, nor macroscopic or microscopic pathologic lesions upon SARS-CoV-2 infection. Despite occasional low levels of SARS-CoV-2 genomic RNA in the respiratory tract, subgenomic RNA and infectious virus were never found, and SARS-CoV-2-specific adaptive immune responses were not detectable over the 13-day study period. We concluded that pigs are not susceptible to productive SARS-CoV-2 infection and do not serve as a SARS-CoV-2 reservoir for zoonotic transmission.

17.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1637974

ABSTRACT

Advanced age is a key predictor of severe COVID-19. To gain insight into this relationship, we used the rhesus macaque model of SARS-CoV-2 infection. Eight older and eight younger macaques were inoculated with SARS-CoV-2. Animals were evaluated using viral RNA quantification, clinical observations, thoracic radiographs, single-cell transcriptomics, multiparameter flow cytometry, multiplex immunohistochemistry, cytokine detection, and lipidomics analysis at predefined time points in various tissues. Differences in clinical signs, pulmonary infiltrates, and virus replication were limited. Transcriptional signatures of inflammation-associated genes in bronchoalveolar lavage fluid at 3 dpi revealed efficient mounting of innate immune defenses in both cohorts. However, age-specific divergence of immune responses emerged during the post-acute phase. Older animals exhibited sustained local inflammatory innate responses, whereas local effector T-cell responses were induced earlier in the younger animals. Circulating lipid mediator and cytokine levels highlighted increased repair-associated signals in the younger animals, and persistent pro-inflammatory responses in the older animals. In summary, despite similar disease outcomes, multi-omics profiling suggests that age may delay or impair antiviral cellular immune responses and delay efficient return to immune homeostasis.


Subject(s)
Aging/immunology , COVID-19/immunology , COVID-19/veterinary , SARS-CoV-2/immunology , Acute Disease , Animals , Antibody Formation/immunology , Bronchoalveolar Lavage Fluid , COVID-19/complications , COVID-19/genetics , Cytokines/blood , Gene Expression Regulation , Gene Regulatory Networks , Genomics , Immunity, Cellular/genetics , Immunomodulation , Inflammation/complications , Inflammation/pathology , Lung/immunology , Lung/pathology , Lung/virology , Lymphoid Tissue/pathology , Macaca mulatta/immunology , Macaca mulatta/virology , Models, Biological , Single-Cell Analysis , T-Lymphocytes/immunology , Transcription, Genetic
18.
Nat Microbiol ; 7(2): 213-223, 2022 02.
Article in English | MEDLINE | ID: covidwho-1621245

ABSTRACT

The major transmission route for SARS-CoV-2 is airborne. However, previous studies could not elucidate the contribution between large droplets and aerosol transmission of SARS-CoV-2 and its variants. Here, we designed and validated an optimized transmission caging setup, which allows for the assessment of aerosol transmission efficiency at various distances. At a distance of 2 m, only particles of <5 µm traversed between cages. Using this setup, we investigated the relative efficiency of aerosol transmission between the SARS-CoV-2 Alpha variant (B.1.1.7) and lineage A in Syrian hamsters. Aerosol transmission of both variants was confirmed in all sentinels after 24 h of exposure as demonstrated by respiratory virus shedding and seroconversion. Productive transmission also occurred after 1 h of exposure, highlighting the efficiency of this transmission route. Interestingly, after donors were infected with a mix of both variants, the Alpha variant outcompeted the lineage A variant in an airborne transmission chain. Overall, these data indicate that a lower infectious dose of the Alpha variant, compared to lineage A, could be sufficient for successful transmission. This highlights the continuous need to assess emerging variants and the development for pre-emptive transmission mitigation strategies.


Subject(s)
COVID-19/transmission , SARS-CoV-2/genetics , Aerosols , Animals , COVID-19/virology , Female , Male , Mesocricetus , SARS-CoV-2/pathogenicity , Viral Load , Virus Shedding
19.
Viruses ; 13(12)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1572667

ABSTRACT

Pre-existing comorbidities such as obesity or metabolic diseases can adversely affect the clinical outcome of COVID-19. Chronic metabolic disorders are globally on the rise and often a consequence of an unhealthy diet, referred to as a Western Diet. For the first time in the Syrian hamster model, we demonstrate the detrimental impact of a continuous high-fat high-sugar diet on COVID-19 outcome. We observed increased weight loss and lung pathology, such as exudate, vasculitis, hemorrhage, fibrin, and edema, delayed viral clearance and functional lung recovery, and prolonged viral shedding. This was accompanied by an altered, but not significantly different, systemic IL-10 and IL-6 profile, as well as a dysregulated serum lipid response dominated by polyunsaturated fatty acid-containing phosphatidylethanolamine, partially recapitulating cytokine and lipid responses associated with severe human COVID-19. Our data support the hamster model for testing restrictive or targeted diets and immunomodulatory therapies to mediate the adverse effects of metabolic disease on COVID-19.


Subject(s)
COVID-19 , Diet, High-Fat/adverse effects , Dietary Carbohydrates/adverse effects , Lipid Metabolism , Severity of Illness Index , Animals , COVID-19/pathology , Cricetinae , Cytokines/blood , Disease Models, Animal , Edema , Fibrin , Hemorrhage , Humans , Interleukin-10 , Interleukin-6 , Lipidomics , Lipids/blood , Liver/pathology , Lung/pathology , Male , Mesocricetus , Obesity , SARS-CoV-2 , Sugars , Vasculitis/pathology , Virus Shedding
20.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: covidwho-1560743

ABSTRACT

Single-dose vaccines with the ability to restrict SARS-CoV-2 replication in the respiratory tract are needed for all age groups, aiding efforts toward control of COVID-19. We developed a live intranasal vector vaccine for infants and children against COVID-19 based on replication-competent chimeric bovine/human parainfluenza virus type 3 (B/HPIV3) that express the native (S) or prefusion-stabilized (S-2P) SARS-CoV-2 S spike protein, the major protective and neutralization antigen of SARS-CoV-2. B/HPIV3/S and B/HPIV3/S-2P replicated as efficiently as B/HPIV3 in vitro and stably expressed SARS-CoV-2 S. Prefusion stabilization increased S expression by B/HPIV3 in vitro. In hamsters, a single intranasal dose of B/HPIV3/S-2P induced significantly higher titers compared to B/HPIV3/S of serum SARS-CoV-2-neutralizing antibodies (12-fold higher), serum IgA and IgG to SARS-CoV-2 S protein (5-fold and 13-fold), and IgG to the receptor binding domain (10-fold). Antibodies exhibited broad neutralizing activity against SARS-CoV-2 of lineages A, B.1.1.7, and B.1.351. Four weeks after immunization, hamsters were challenged intranasally with 104.5 50% tissue-culture infectious-dose (TCID50) of SARS-CoV-2. In B/HPIV3 empty vector-immunized hamsters, SARS-CoV-2 replicated to mean titers of 106.6 TCID50/g in lungs and 107 TCID50/g in nasal tissues and induced moderate weight loss. In B/HPIV3/S-immunized hamsters, SARS-CoV-2 challenge virus was reduced 20-fold in nasal tissues and undetectable in lungs. In B/HPIV3/S-2P-immunized hamsters, infectious challenge virus was undetectable in nasal tissues and lungs; B/HPIV3/S and B/HPIV3/S-2P completely protected against weight loss after SARS-CoV-2 challenge. B/HPIV3/S-2P is a promising vaccine candidate to protect infants and young children against HPIV3 and SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Administration, Intranasal , Animals , Antibodies, Viral/blood , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Cricetinae , Genetic Vectors , Immunization , Parainfluenza Virus 3, Bovine/genetics , Parainfluenza Virus 3, Human/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL